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I. Lattice vibrations, heat capacity, and thermal expansion 
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Abstract 

We present a two-part theoretical study of the thermal properties of crystalline 13-SIC based on an empirical interatomic 
potential developed by Tersoff which emphasizes the bond-order nature of covalent solids. In part ! we use this description 
of interatomic interactions in both lattice dynamical calculations and molecular dynamics simulations with a temperature- 
scaling procedure to obtain reasonably accurate predictions of the heat capacity and the thermal expansion coefficient. Our 
results notwithstanding, improvement of the potential to include ionic interactions for the description of vibrational 
properties, and extension of short-range forces beyond the nearest neighbors, would be quite useful. © 1997 Elsevier Science 
B.V. 

1. Introduction 

Silicon carbide is a material which has wide ranging 
structural 1, electronic [2], and nuclear applications [3] by 
virtue of its high-temperature strength and mechanical 
stability, high thermal conductivity, wide band-gap charac- 
teristics, and low level of induced radioactivity. Not sur- 
prisingly therefore, there is continued interest in develop- 
ing fundamental theoretical and computational models that 
are capable of describing the various physical properties of 
this material. On the other hand, despite the fact that many 
of these applications involve high temperatures, little atten- 
tion has been given thus far to our ability to adequately 
predict the thermal properties of SiC. 

The purpose of this work is to present results on the 
thermodynamic properties of a perfect crystal of polytype 
3C ([3-SIC) obtained by an atomistic modeling approach. 
By adopting an interatomic potential model which treats 
the material as purely covalent, we show that the heat 
capacity and thermal expansion coefficient are quite well 
described, whereas the calculated phonon dispersion curves 
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i See, for example, various papers in Ref. [1]. 

clearly reveal the effects of ignoring electrostatic interac- 
tions. In a companion paper, a parallel study of thermal 
conductivity is reported where, in addition, we have con- 
sidered the effects of several types of point defects: va- 
cancy, interstitial, and antisite. 

In atomistic modeling of materials properties and be- 
havior, the single most important consideration is the 
description of interatomic interactions, a problem that can 
be treated at one of three levels. At one extreme, ab initio 
electronic structure methods [4] provide the most accurate 
description; however, they are also the most computation- 
ally demanding. This approach is at present restricted to 
simulation systems of about 100 atoms, and is generally 
considered not yet practical for finite-temperature studies. 
At the other extreme is the classical potential model [5,6] 
which, though highly empirical, is computationaliy the 
most tractable. At the intermediate level is the tight-bind- 
ing approximation [7,8] which involves a simplified treat- 
ment of the band-structure contribution to the energy; this 
hybrid method is an attempt to combine the advantage of 
an electronic-structure description with the computational 
simplicity of atomistic calculations. For the present study 
of thermal properties of 13-SIC, an empirical potential [9] 
will be adopted on the grounds that applying either the ab 
initio or the tight-binding approach would be computation- 
ally prohibitive and difficult to justify a priori. 
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The potential model used in this work is a many-body 
description developed by Tersoff for covalent crystalline 
solids. Originally applied to tetrahedrally bonded silicon 
[10], it was later extended to carbon [11], and then to SiC 
by combining the individual models for Si and C with a 
Si-C interaction parametrized to give the correct heat of 
formation [9]. Compared to other empirical potentials pro- 
posed for Si, the Tersoff model is noteworthy for its 
bond-order nature which emphasizes the role of local 
coordination in determining the strength of a bond between 
two atoms. Thus, the potential is formulated so that the 
interaction between a pair of atoms becomes weaker when 
there are more neighbors surrounding the pair, consistent 
with the physical behavior known from chemical bonding 
theory [12]. Applications of the Tersoff model to Si have 
been summarized and compared with other empirical po- 
tentials [13]; more recently, studies of structural transfor- 
mation [14], melting [15], point defects [16,17], and ther- 
modynamic properties [18] using this potential have been 
reported. 

In contrast to Si for which many empirical potentials 
have been proposed, few attempts at developing compara- 
ble descriptions for SiC have been reported. Besides the 
Tersoff model, an early potential based on the inclusion of 
an explicit three-body interaction in a manner similar to 
the Stillinger-Weber model [19] for Si was suggested by 
Pearson et al. for use in surface studies [20]. Another 
approach, based on a modification of the embedded atom 
method, was recently proposed by Baskes [21]. Thus far, 
applications reported include studies of tension-induced 
cleavage [22], point defect structures [23], surfaces [24], 
thermomechanical properties [25], and pressure-induced 
amorphization [26]. A comparison of the elastic constants 
shows that the Tersoff potential is superior to the other two 
models [25]. 

We begin by reviewing in Section 2 the Tersoff model 
from the standpoint of the bond order parameter and the 
interaction range cutoffs, both aspects having a bearing on 
the performance of the potential in finite-temperature cal- 
culations. In Section 3 the two computational approaches 
used in this work are described, lattice dynamics and 
molecular dynamics simulation, along with a procedure 
relating the simulation temperature and the temperature of 
the physical system. In Section 4 results are given for a 
single crystal of B-SiC, first the vibrational properties of 
the density of states and dispersion curves, and then the 
heat capacity and thermal expansion. This paper concludes 
with remarks on how the potential description may be 
improved for a specific application, 

2. Interatomie potential description - The Tersoff  model  
of  15-SIC 

In the bond-order potential description of Tersoff [9- 
11,27,28], the interatomic interaction between any two 

atoms in the lattice consists of a repulsive component and 
an attractive component, 

Vij = f c ( r i j ) [  a i j e  -Aijrij - Bije-~ijriJbij ] . (2.1) 

The function fc(rq) cuts off the interaction beyond an 
outer distance S and is unity up to an inner distance R; 
between R and S it varies smoothly. The essential feature 
of the model is the bond order parameter bq which is a 
measure of the strength of the bond between atoms i and 
j; this quantity depends on the presence of the other atoms 
in the neighborhood of the interacting pair [9,12]. It has the 
functional form 

XU 
b i j =  (1 "]- [~in "ni~ij )xl/2n ' (2.2a) 

where 

~ij = E f c ( r i k ) g ( O i j k )  , (2.2b) 
ks i,j 

and the function g(Oij k) is given by 

c~ c 2 

 (oij ) = 1 + - + ( h i -  cos  o,jk)2] " ( 2 2 c )  

One sees that the bond-order parameter depends explicitly 
on the local environment through the summation in Eq. 
(2.2b). First, an increase in the number of atoms in the 
neighborhood (coordination number) will cause the i - j  
bond to weaken. Second, the separation distance between 
atom i and an environmental atom k also can affect the 
bond-order parameter through the cutoff function in Eq. 
(2.2b). Lastly, the bonding geometry plays a direct role 
through the function g(Oijk), which depends on the angle 
between bond i - j  and bond i-k. 

The parameter set used in the present work is given in 
Table 1. Note that the carbon parameters are those given in 
Ref. [27] (see also the footnote in Ref. [28]). Unlike the 
other ten parameters, the values for R and S were not 
optimized; they were simply chosen to lie between the first 

Table 1 
Parameters used in the Tersoff potential parameter carbon silicon 

Parameter Carbon Silicon 

A (eV) 1.5448 X 103 1.8308 X 103 
B (eV) 3.8963 X 102 4.7118X 102 
A (nm-i ) 0.34653 0.24799 
/x (nm-I ) 0.23064 0.17322 
fl 4.1612X 10 -6 1.1000× 10 -6 

n 0.99054 0.78734 
c 1.9981 X 104 1.0039× 105 
d 7.0340 16.217 
h - 0.39953 - 0.59825 
R (nm) 0.18 0.27 
S (rim) 0.21 0.30 

Xsi-c = 1.0086 
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and second nearest neighbors of the static lattice. Only one 
property of SiC, the heat of formation, was used to fix the 
cross-interaction, and that was to determine the parameter 
Xij. For all other parameters describing the interaction 
between Si and C, simple combining rules were applied: 

h i+Ay 
)[ij = 2 ' (2.3a)  

t~iJ 2 ' (2.3b) 

Aij = ~ ,  (2.3c) 

Oij : ~ ,  (2.3d) 

R ij = g~iR~, (2.3e) 

and 

Si i = S~iS  ~ . (2.3f) 

As indicated in Eqs (2.3), the parameters for the Si -C 
interaction are based on the values for the individual 
elements. Thus, the values of R and S for the Si-Si  
interaction in SiC were taken to be the same as for pure Si, 
2.7 A and 3.0 A, respectively. In Si the equilibrium 
bond-length is 2.35 A and the second-nearest neighbor 
distance is 3.84 A, so the values of R and S are reason- 
able. Using the same values for SiC, however, poses an 
obvious problem. Because the bond-length of SiC is on!y 
1.86 A, the distance between Si atoms in SiC is 3.03 A. 
Thus, at finite temperature, thermal motion can easily 
reduce the Si-Si  distance to below 3.0 ~,. When this 
occurs the effective coordination number of a Si atom can 
jump from four to as high as sixteen. Even if the coordina- 
tion number just increases by one, a significant increase in 
the energy could result. Not all Si-Si  interactions will 
affect the energy in the same way; those that form small 
angles with the S i -C bonds will have the greatest effect 
[25]. 

Besides the increased amplitude of displacement at 
elevated temperatures which allows the second-nearest 
neighbors to interact, aaaother way for these interactions to 
take place is through an external loading. To avoid this 
effect, the cutoff distance was made proportional to the 
lattice parameter [25], so that a uniform contraction of the 
system under hydrostatic compression would have no in- 
fluence on the cutoff function. However, for finite temper- 
ature simulations at zero pressure, this scaling, if anything, 
would exacerbate the problem. From the standpoint of 
ensuring that only nearest neighbor interactions are taken 
into account during a simulation run, we have found that 
the simple procedure of excluding the Si-Si  interactions 
regardless of their separation distance gives the best re- 
suits. 

3. Methodology for modeling thermal properties 

3.1. Harmonic / quasiharmonic approximation 

For a system of N atoms the 3N normal modes of the 
system can be obtained by diagonalizing the force-con- 
stant matrix 

1 02U 
Di,~j ~ = - -  , (3.1) 

~mimj Oria Orjl3 

where U is the potential energy of the system, i and j 
denote the atom number, and ~ and /3 = x, y, and z. The 
force-constant matrix for the Tersoff potential has been 
derived analytically. See Ref. [18] for details. 

A histogram of the 3N modes provides a discrete 
density of states. In the case of a perfect crystal, one can 
also determine the continuous density of states by taking 
advantage of the periodicity of the lattice in reciprocal 
space. The equations of motion are transformed into an 
eigenvalue problem 

liD = w2Ill = 0, (3.2) 

where D is the dynamical matrix, the Fourier transform of 
the force-constant matrix given in Eq. (3.1). The calcula- 
tion of the density of states thus consists of generating 
k-points in the reciprocal space and solving Eq. (3.2) for 
each k-point. 

We have employed two different methods of generating 
the k-points. In the first method, a uniform grid is laid 
down in the Brillouin Zone. At each point in the grid, we 
determine whether an equivalent point has already been 
listed, using the 48 cubic symmetries. If not, it is added to 
the list. In the second method, we employ a random 
sampling technique. We generate a random k-point within 
a cube of side 2~r/a (where a is the lattice parameter), 
and then determine whether it is in the first Brillouin Zone. 
If it is, then it is accepted. While the two methods yield 
essentially identical results, it turns out that the second 
method is faster. We present the density of states in Fig. 
la. 

Fig. lb  shows the phonon dispersion curves given by 
the Tersoff potential. (Previous results given in [25] con- 
tained an error.) Comparison with experimental data [29- 
31] indicates that the optical frequencies are overestimated, 
and the TO and LO modes are degenerate at the F point, 
in contrast to the experimental results. As noted before 
[25], the problem lies in the fact that the potential describes 
only covalent bonding whereas [3-SIC is known to be 12% 
ionic. The LA mode is fairly well reproduced, but the TA 
mode is overestimated, which is a common feature of this 
potential (see, for example, [18]). A comparison of Fig. la  
and b indicates that the acoustic modes correspond to 
frequencies at or below about 19 THz, while the optic 
modes have frequencies exceeding about 27 THz. 



56 L.J. Porter et al. / Journal of Nuclear Materials 246 (1997) 53-59 

0.4 

0.35 

0.3 

0.25 

~-~ 0.2 

o 
0.15 

0.1 

0.05 

0 

(a) 

5 10 15 20 25 30 
frequency (THz) 

35 

35 

30 I , ' 

25 + , ° o  

~" ~ " %000 d 
20 ' , , .--~- .,: 

, N N  / o  

10 I I  ~, X \  /" ' 

/ /  ', \ \ / ol $ / /  , \ \ \  I . ° , , I oo °  ', 
i , ,  

o i, . . . .  I . . . .  i , , , ' , , 1  . . . .  I ,  , i , , ~  
F X K F L 

p h o n o n  w a v e  v e c t o r  ( 2 ~ / a )  

Fig. 1. (a) Vibrational density of states of 13-SIC at 0 K obtained 
from the Tersoff potential, and (b) Phonon dispersion curves of 
[3-SIC at 0 K obtained from the Tersoff potential (optical modes 
are solid lines, and acoustic modes are dashed lines), and experi- 
mental data [29-31] (open circles). 

Given the phonon frequencies obtained from Eq. (3.1), 
one can readily calculate various thermodynamic proper- 
ties using the harmonic approximation. Thus, the internal 
energy and the heat capacity are given by 

1 h i t  i 
E=U°+-2Eh%+ ~i [ e x p ( h % / k B T ) - l ] '  (3.3) 

t 

( h toi/ kB T ) 2 exp(h wi/  kB T ) 
Cv = kB E , (3.4) 

, [ e x p ( h o ~ # k . r ) -  1] 2 

respectively, where U o is the static lattice energy. The 
thermal expansion coefficient is given by [32] 

1 
,~(r) 3B(r---) E v ,  c v , i ,  (3.5) 

i 

where Cv, i is the summand in Eq. (3.4), and the Gruneisen 
parameter Yi is defined as 

d(ln wi) 
Yi d(ln V) " (3.6) 

Results for these quantities will be shown below. In the 
case of a perfect crystal, one can also replace each sum 
over the 3 N normal modes by a sum over wavevectors in 
reciprocal space. The latter representation is preferable at 
low temperatures because the first method neglects the 
low-frequency phonons associated with the long-wave- 
length modes, due to the finite size of the simulation cell. 
We have found that beyond 200 K the two methods yield 
essentially identical results. 

3.2. Molecular dynamics and temperature scaling 

The harmonic approximation is expected to be inade- 
quate at high temperatures because it neglects phonon-  
phonon interactions. This problem can be overcome by 
using molecular dynamics. 

Because molecular dynamics is based on classical me- 
chanics, certain quantum corrections are necessary when 
comparing results with experiments at low temperatures. 
We have adopted the procedure whereby one defines a 
relation between the temperature of the simulation, TMD, 
and the temperature of the experiment, T~eal, by requiring 
that the internal energy of the simulation system be equal 
to that of the corresponding quantum system at Tea t [33], 

1 
3 ( N -  1)kBTMo = -~ E h w i  + 

i i 

h w i 

× [exp((hwi)/(kBT~,, i ))  - 1] ' 

(3.7) 

wwhere w i is the ith normal mode frequency. The (N - 1) 
factor accounts for the fact that the center of mass is to be 
held fixed, and the sums are over the 3 ( N -  1) non-zero 
frequencies. Another approach would be to estimate the 
correction terms in an expansion of the free energy in 
powers of Planck's constant [34,35]; this has been imple- 
mented in a study of structural and thermodynamic proper- 
ties of an ionic crystal MgO [36]. 

The scaling relation between TMO and Treal for the 
perfect crystal is shown in Fig. 2, where the phonon 
frequencies have been obtained from the force constants 
calculated from a static lattice at zero-pressure. Notice that 
T~a I = 0 gives TMO = 510 K, which can be considered as 
the zero-point temperature of our system. The relation Eq. 
(3.7) follows from the assumption that the internal energies 
of both the MD system and the real system behave har- 
monically, at least at low temperatures, where the scaling 
is important. We have reevaluated the force-constant ma- 
trix using the lattice parameter obtained from an MD 
simulation at constant (zero) stress and a temperature 
TMD = 510 K. The resulting normal mode frequencies give 
a scaling factor which is effectively identical to that shown 
in Fig. 2, with a corresponding zero-point temperature of 
507 K. 
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The  molecular dynamics determination of the thermal 
expansion coefficient ~nd heat capacity is quite straight 
forward and follows from the expressions 

1 da 
a = - -  - -  (3.8) 

a dT  

and 

OH .=(+). . 9 ,  

where the enthalpy H is equal to the internal energy at 
zero pressure. 

4. Thermal properties of single crystal [3-SIC 

Fig. 3 shows the thermal expansion coefficient calcu- 
lated using both the harmonic approximation and molecu- 

Table 2 
Gruneisen parameters 

Tersoff Ab initio [39 ]  Experiment 

T O ( F )  1.16 1.07 1.02/1.102 
L O ( F )  1.16 1.02 1.01/1.091 
TA(X)  0.40 0.12 
LA(X) 1.13 0.82 
TO(X) 1.31 1.46 1.30 
LO(X) 1.13 1.16 
TA(L) 0.23 - 0 . 1 3  - 0 . 2 8  
LA(L) 1.19 0.90 - 0.11 
TO(L) 1.25 1.31 1.24 
LO(L) 1.10 1.15 1.30 

lar dynamics. In the former, Eq. (3.6) was evaluated by 
applying a linear fit to the appropriate phonon frequencies 
determined at three system volumes, V o and (1 + 0.03)V 0, 
where V o is the equilibrium volume at Tub = 0 K. In the 
latter, the lattice parameter values found by simulation 
were fitted to a third-order polynomial. 

As can be seen in Fig. 3, the harmonic approximation 
appears to yield values consistently closer to the experi- 
mental data [37,38] than does molecular dynamics. Such a 
result is not surprising at low temperatures, where there is 
uncertainty in our MD results because our scaling relation 
is necessarily fiat (recall Fig. 2); however, it is certainly 
not expected at high temperatures. The fact that molecular 
dynamics yields greater expansivity at high temperatures 
compared to the harmonic approximation method seems 
reasonable on the grounds that the phonon-phonon inter- 
actions are ignored in the latter calculation. Our interpreta- 
tion is that the apparent agreement between high-tempera- 
ture data and the results from the harmonic approximation 
is fortuitous, and should be attributed to a cancellation of 
errors. 
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Fig. 3. Thermal expansion coefficient as a function of tempera- 
ture, for the harmonic approximation (dashed line), MD values 
(solid line), experimental data [37] (crosses), and experimental 
data [38] (boxes with cross inside). 
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It is seen from Eq. (3.5) that any potential which 
predicts well the Gruneisen parameters and the heat capac- 
ity will be successful in describing the thermal expansion. 
In Table 2 we show the calculated values of the Gruneisen 
parameters at the symmetry points F ,  X, and L obtained 
using the Tersoff potential and by ab initio methods [39], 
along with available experimental data [39]. While general 
agreement between Tersoff and ab initio seems satisfac- 
tory, the discrepancy in TA(L) is noteworthy. Also, both 
calculations yield significantly higher values for ~/LA(L) 
than experiment. 

Fig. 4 shows the heat capacities at constant volume and 
pressure obtained using the Tersoff potential along with 
experimental data for Cp [40]. It is evident that this 
property is predicted well by the potential model. The 
agreement also serves to validate the temperature scaling 
relation that we have adopted in this work. 

5. Conclusions 

We have shown that using a current model description 
of interatomic forces in [3-SIC, one can achieve a reason- 
ably accurate prediction of the heat capacity and thermal 
expansion coefficient. Although neither property may seem 
particularly exciting from the standpoint of atomistic simu- 
lation, they are both nevertheless important physical prop- 
erties from the standpoint of high-temperature materials 
applications. Knowledge of how well their temperature 
variations can be predicted should be useful as baseline 
information for studies of bimaterial interfaces, such as the 
calculation of thermal stresses. 

Combined with our own experience in modeling Si [18] 
and C [41] with basically the same potential, we may 
conclude that the Tersoff description works well for cova- 
lent systems in which directional bonding effects are strong. 
Better results are indeed obtained for C and SiC than for Si 
[18,41]. We have also found that ionic interactions are 
clearly important in treating properly certain individual 
normal modes of vibration; on the other hand, their neglect 
seems to have little effect on integrated properties of the 
density of states. This is a rather general occurrence in 
materials modeling studies; namely, the robustness of a 
particular interatomic potential model can be quite prop- 
erty-specific. 

As a compromise between computational efficiency 
and physical rigor, empirical many-body descriptions offer 
a reasonable starting point for an exploratory study. From 
the standpoint of theoretical connection to density func- 
tional theory, the basis of ab initio methods, the Tersoff 
model has been shown to emerge as a low-order variant of 
the bond-order potentials [42]. It is interesting that a 
connection between this model and an effective medium 
approximation developed for metals also has been noted 
[43]. 

The present results should provide a basis for the 
investigation of electronic-structure effects since ab initio 
calculations on SiC are now feasible [39,44,45]. Given the 
computational expense involved in these methods it would 
be appropriate to start with a description based on the tight 
binding approximation in which the band-structure contri- 
bution to the energy is treated through a model Hamilto- 
nian. A self-consistent model has been developed [46]; 
even though its use thus far has been confined to structural 
properties at T = 0 only, it seems that temperature-depen- 
dent and vibrational properties soon can be treated in this 
way should the need arise. 

In a follow-up paper, we extend our atomistic modeling 
approach to the calculation of thermal conductivity of SiC 
using the same Tersoff model. It will be shown that 
generally satisfactory agreement with experiment is at- 
tained for perfect as well as defective crystals. Further- 
more, we will present results which suggest that while 
point defects have a negligible effect on the thermal 
expansion and heat capacity, they have a pronounced 
effect on the thermal conductivity; specifically, the con- 
ductivity is sharply reduced as a result of enhanced phonon 
scattering. 

In closing, we note that atomistic simulation provides 
an effective approach to the fundamental understanding of 
thermal properties of crystalline solids, particularly in the 
presence of heterogeneities or extended defects. Nonuni- 
form or nonequilibrium (driven) systems often have associ- 
ated complex microstructures and kinetics which evolve 
over a hierarchy of length and time scales. Atomistic 
simulation, with molecular dynamics as a special case, 
needs to be integrated into a multiscale modeling scheme, 
along with mesoscopic techniques such as kinetic Monte 
Carlo, in order to effectively deal with the behavior of 
structural complexities in a thermal environment [47,48]. 
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